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Wildfire risk management across diverse bioregions in a
changing climate

Tristan Campbella , S. Don Bradshawb , Kingsley W. Dixona and Philip
Zylstraa

aSchool of Molecular and Life Sciences, Curtin University, Bentley, Australia; bSchool of Biological
Sciences, University of Western Australia, Nedlands, Australia

ABSTRACT
Wildfire risk-management needs to consider interrelated factors
that influence fire regimes, including changing climate and some-
times conflicting stakeholder priorities. With wildfires increasing in
size and intensity over recent decades, wildfire risk management
is becoming more important and more complex. For southwest
Australia, wildfire risk-management is predicated on a longitudinal
study of the relationship between prescribed burns and wildfires
from 1953–2004 over a subset of this biodiverse region. Our study
replicates the methodology of the longitudinal study, applying it
to the wider region and extending the analysis to 2021. We found
the extrapolation of the longitudinal study’s findings to the wider
region invalid, as was extrapolation beyond 2004. In particular,
the area of prescribed burns generally had negligible influence on
wildfire area. However, more spatially complex fire history was
strongly correlated with lower probability of large wildfires (inde-
pendent of area burned). This highlights the limitation of extrapo-
lating wildfire risk-management policies to areas of differing
vegetation and/or climate, including changing climate over time.
The potential of indigenous-led practices for wildfire risk and bio-
diversity conservation, particularly for areas with high spatial vari-
ability, is apparent as is the need for alternative strategies to
prescribed burning as the primary tool in wildfire-risk mitigation.
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Introduction

Wildfires are increasingly resulting in adverse impacts around the world (Jones et al.
2022). Of the four primary processes that influence wildfire behaviour: (biomass/nec-
romass or fuel volume, ability of biomass to burn, weather and ignition source
(Bradstock 2010), biomass/necromass reduction is typically the focus of efforts to
manage wildfire risk (Jenkins et al. 2020). With both the geographic extent and
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duration of fire weather increasing globally over the past four decades due to climate
change (Jolly et al. 2015) there is a heightened focus on managing wildfire risk
through biomass/necromass reduction (Burrows and McCaw 2013).

Fire regimes, defined as the frequency, seasonality and intensity of fires across an
area (Krebs et al. 2010), are strongly influenced by climate and vegetation (Archibald
et al. 2013). Altered fire regimes can create feedbacks that may have positive or nega-
tive impacts on flammability and fire risk, and are affected by both natural and artifi-
cial ignitions (Zylstra et al. 2022). The degree and direction of feedbacks are highly
dependent again on the climate and vegetation characteristics of the area in question.

Effective wildfire risk management requires consideration of these complex, inter-
related factors, along with the public perception of wildfire risk against other values,
such as protection of property and lives, biodiversity conservation, climate change
and government agency effectiveness (Bardsley et al. 2018). This often results in con-
flicting perceptions and priorities amongst stakeholders (Driscoll et al. 2010; Bentley
et al. 2017).

For the global threatened biodiversity hotspot of southwest Australia (Myers et al.
2000), government policy for wildfire risk management by the Department of
Biodiversity, Conservation and Attractions (DBCA) is founded on the longitudinal
study of fire data by (Boer et al. 2009) from 1953 to 2003, which is used to design an
annual target of 200,000 ha of prescribed burns over a 2.5 million ha section of the
public forest estate (Burrows and McCaw 2013), divided into three Land
Management Zones (LMZs). Our study replicates the methodology of Boer et al.
(2009), deploying the same methodology to assess the applicability of the findings
from Boer et al. (2009) over the same southwest region of Australia where wildfire
risk management policy is based on these findings. Our aim is to determine whether
the extrapolation of Boer et al. (2009) to the broader southwest region provides a
relevant basis for the wildfire risk management policy, and whether this remains valid
with the addition of a further 17 years’ of fire history data through to 2021.

Materials and methods

Study area

Of the four recognised Interim Biogeographic Regions of Australia (IBRA) (DAWE
2020) over which the wildfire risk management policy is applied, the longitudinal
study by Boer et al. (2009) covers an area encompassing subsections of two regions
(see Figure 1 and Table 1). Archibald et al. (2013) defines two fire regimes for the
study area over recent decades, with the majority of the area being classed as an
‘intermediate-cool-small’ wildfire regime (three-month fire season, 12-year fire return
interval, less than 1% burnt annually and maximum fire size less than 9 km2) and the
western-most section of the Warren region classed as a ‘rare-cool-small’ wildfire
regime (one-month fire season, > 50 year fire return interval, less than 0.5% burnt
annually and maximum fire size less than 4 km2).

The current wildfire risk management policy is applied across a much wider range
of average annual weather conditions and vegetation classes than the region studied
by Boer et al. (2009) (see Figure 2). Climatic trends of decreasing rainfall and
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increasing temperature have continued from the longitudinal study period to the pre-
sent day (see Figure 3) and are projected to continue under climate change models
(Andrys et al. 2017). As a result, trends in fire behaviour are likely to have altered in
the 17 years from the conclusion of the longitudinal study period, and therefore influ-
enced the relationship between prescribed burn regimes and wildfires on a land-
scape scale.

Figure 2. Range of average daily maximum temperatures and total annual rainfall for the study
area. Weather data from Maps and gridded spatial data. Bureau of Meteorology [accessed 2022 Jan
15]. http://www.bom.gov.au/climate/data-services/maps.shtml. Basemap from OpenStreetMap
Contributors (2021).

Figure 1. Geographic regions used for this study. Basemap from OpenStreetMap Contributors (2021).
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Data sources

Fire history data were sourced from the December 2021 update of the same dataset
used by Boer et al. (2009) (DBCA 2021a), and are derived from a combination of his-
torical records and digital spatial data as well as remote sensing for recent decades.
Note that the ‘fire year’ of this dataset is from 1st July to 30th June the following
year (i.e. a ‘fire year’ of 2005 is from 01/07/2005 to 30/06/2006). From here on, all
references to year are ‘fire year’, hence the data ranged from 1953 to 2020.

Information extracted from this dataset consists of polygons of mapped fire events
with key attributes including the date of fire, fire type (Prescribed Burn, Wildfire)
and the area of the fire in hectares. The DBCA Fire History dataset (DBCA_060) was
cropped to the geographic extent of DBCA’s Prescribed Burns—Land Management
Zones (LMZs) dataset (DBCA 2021b) which is a close approximation to the South
West Fire Management Area (FMA) defined by Howard et al. (2020).

It is recognised that the accuracy of the fire history dataset has improved over
time, especially with the increasing improvements in the temporal, spatial and spec-
tral resolution of satellite data in the past few decades used by DBCA to map the
extents of wildfires in particular. There is therefore a focus on the changes in large
wildfire events over time, as these represent the largest risk events, account for the
vast majority of the area burnt by wildfire over the study period and are likely to be
the most accurately recorded wildfires in the older portions of the fire history dataset.
This focus may reduce some of the issues encountered when comparing fire extents
delineated by different approaches, as presented by Skakun et al. (2021) and is con-
sistent with Wang et al. (2021), who found that the annual total extent of wildfires is
often best predicted by the size of the largest individual wildfire.

Figure 3. 10-year running mean trends in rainfall and temperature anomalies for south-west
Australia. Data from Climate change – trends and extremes. Bureau of Meteorology [accessed 2022
Jan 15]. http://www.bom.gov.au/climate/change/#tabs=Tracker.
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Statistical analysis

Initial analysis assessed the length of time that the annual extent of prescribed burns
in one year correlated with reduced extent of wildfires in following years. To find
this, we replicated the approach used by Boer et al. (2009) using logarithmic-linear
quantile regression performed using the ‘statsmodels’ module for Python 3 (Seabold
and Perktold 2010). This was performed for annual wildfire extents of time lags of up
to 10 years from a given annual prescribed burn extent, for both the 1953–2003 time
period used by Boer et al, and for the full 1953–2020 dataset.

Implicit in this approach is the assumption that wildfire extent relates to the fuel
reduction effect of preceding prescribed burns, but not preceding wildfires. Although
this assumption does not reflect the true area of each region burnt in years preceding
wildfires, we replicated it, for consistency, as part of the approach of Boer
et al. (2009).

One of the core findings of Boer et al. (2009) was the measurement of ‘leverage’
(Loehle 2004), which is the inverse gradient of the relationship of wildfire extent to
prescribed fire extent. To determine leverage, we analysed the annual extent of pre-
scribed burns versus the mean annual extent of wildfires using averaging windows
from one to up to ten years after the given prescribed burn. Logarithmic-linear
regressions were used for consistency with the quantile regression and linear regres-
sions to calculate the leverage of prescribed burns (linear gradient).

In replicating the approach of Boer et al. (2009), we noted that the regression was
performed on the mean extent of prescribed burns and wildfires in concurrent six-
year averaging windows (Figure 4). For example, the mean for annual prescribed
burn extent for 1961 to 1966 was correlated against the mean annual wildfire extent
for 1961 to 1966. Therefore, changes in wildfire extent are partially attributed to

Figure 4. Graphical representation of time averaging windows used to calculate regressions
between mean extents of prescribed burns and wildfires.
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prescribed burns carried out after the wildfires had occurred. This approach also
means that offsets of zero to five years were assessed, not up to six years.

As this was an unexpected finding, the results were verified by digitizing the
annual prescribed burn and wildfire fire extent data in Boer et al. (2009) and inde-
pendently plotting and performing logarithmic-linear and linear regression models on
the concurrent six-year running average windows of the prescribed burn and wildfire
data. These results were compared with the plots and regression models in Boer et al.
(2009) and found to be consistent. Despite this anomaly, we replicated this analysis
for consistency, referring to it as the PB6vsWF6 period.

Influence of spatial patterns of fire history

For multi-parameter spatial pattern analysis, we assessed the relationship between
area burnt by wildfires and changing fire management, drought index and fuel age
spatial patterns using the ‘explained deviance’ parameter from Generalised Additive
Models (GAMs). GAMs were generated using pyGAM (Serven and Brummitt 2018),
from the annual extent of wildfires mapped in the DBCA_060 dataset with Keetch-
Byram Drought Index (KBDI) and output from time since fire spatial pat-
tern analysis.

We calculated daily cumulative time-series KBDI from 01/07/1953 to 30/06/2021
on a 5 km grid using gridded daily maximum temperature and daily rainfall data
taken from the Bureau of Meteorology’s gridded historical data (Bureau of
Meteorology 2021). This has been shown to be the most spatially accurate source of
weather data for the study region (Campbell and Fearns 2022). The lack of daily
wind speed data across the time range of the study prevented the calculation of other
fire danger indices such as the Forest Fire Danger Index (FFDI), which is consistent
with Boer et al. (2009). For each fire year in each region, we calculated the median of
all daily gridded KBDI points.

The time since fire spatial pattern considers the spatial arrangement of the fire his-
tory through measures such as the average size of fire ages patches, how connected
patches of more recent or longer time since fire are, and the complexity of individual
patches. Spatial pattern analysis was performed on the total fire extent for each year
(prescribed burns plus wildfires), transformed into a 100m x 100m gridded raster
file. The stack of fire extent rasters for the 6 years preceding each year were used to
classify each pixel of the layer for each year as comprising either up to six years since
fire (¼<6TSF) or more than six years since fire (>6TSF), to use the same classifica-
tion of ‘old’ and ‘young’ fuels as Boer et al. (2009). The same five spatial metrics as
Boer et al. (2009) were calculated in FRAGSTATS (McGarigal et al. 2012) for each
year of analysis for each bioregion and the overall study region. These were:

1. The percentage of the landscape of each time since fire class (PLAND)
2. The number of patches of each time since fire class (NP)
3. The mean area of each time since fire class (AREA_MN)
4. The mean perimeter-area ratio for each time since fire class (PARA)
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5. The ‘connectedness’ of the time since fire class patches, with a threshold distance
of 200 m (CONNECT)

To replicate GAM process in Boer et al. (2009), GAMs for each region and time
period were also created for the pairwise combination of year (as a proxy for chang-
ing prescribed burning protocols and fire-fighting technology) and KBDI. The
residual errors from these GAMs were then used as the input to create GAMs for
individual and three-factor input models for all time since fire spatial pattern metrics
from FRAGSTATS. After modelling every 3-factor combination of the patch metrics
as well as each patch metric individually this resulted in 129 GAMs for each time
period and region. Again, the ‘explained deviance’ parameter was used to compare
GAM efficacies.

Large wildfire probability

The year and size of each recorded wildfire were used to assess the probability of
occurrence of fire sizes (Probability Density Function (PDF)) for each year using the
gaussian kernel density estimation function in ‘SciPy’ module for Python 3 (Virtanen
et al. 2020). The resulting PDF was normalised by the highest number of occurrences
of fires for each fire size annually, with the final PDF showing the relative likelihood
of a fire of a given size for each year from 1953–2020. The mean probability of large
wildfires (>1,000 ha) was calculated for each year and qualitatively compared with
long-term patterns of prescribed burning extents and quantitatively with the geospa-
tial patch analysis of recent fire history from FRAGSTATS.

Results

Overall temporal trends in fire extent

The annual extent burnt by prescribed burns and wildfires from 1953 to 2020 for
each region is shown in Figure 5. The broad inverse relationship between annual pre-
scribed burn extent and wildfire extent described by Boer et al. (2009) is apparent for
the Boer region up to 2003. This qualitative relationship between annual extents of
prescribed burns and wildfire up to 2003 is also visible for the Warren region and
the LMZ, but not in the other three IBRA regions (Southern Jarrah, Northern Jarrah
and Perth regions).

When more recent data from 2003–2020 are considered, this relationship between
prescribed burn and wildfire extents disappears across all regions. The annual pre-
scribed burn extent for most regions increased slightly from 2003–2020 but with dif-
ferent impacts on wildfire extent. Wildfire extent in the Southern Jarrah region
decreased (continuing the trend from prior to 2003) and the Northern Jarrah, LMZ
and Boer regions showed no change in the average annual wildfire extent. The
Warren region had a decrease in average annual prescribed burn extent after 2003
and no change in average annual wildfire extent. The Perth region had a positive cor-
relation between prescribed burn and average annual wildfire extents after 2003, with
wildfire extents increasing with increasing sizes of prescribed burning.

GEOMATICS, NATURAL HAZARDS AND RISK 2411



Statistical analysis

Quantile regression analysis by Boer et al. (2009) from lag times of zero to eight years
found significant negative quantile coefficients for annual wildfire extents with lags of
one to four years and six years from annual prescribed burn extents. Boer et al.
(2009) deemed the inverse relationship between prescribed burns and wildfires to be
significant for the period over which there was a minimum of one significant negative

Figure 5. Area burnt by prescribed burn and wildfire for each study region from 1953–2020.
Smooth solid lines are linear GAM models, with 95% confidence intervals shown as dashed lines.
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quantile regression over a two-year period, concluding that there was a significant
negative relationship between the annual extents of prescribed burns and wildfires for
up to six years following prescribed burns. This is represented graphically in Figure
6. Note that this is not an assessment of the relationship for any individual fires but
an average on a landscape scale.

While the quantile regression results are provided in full in the supplementary mater-
ial, Table 2 below summarises these data into the period over which there is deemed to
be a significant relationship between prescribed burn and wildfire extents as per the def-
inition above. A similar period was found for the Boer region from 1953–2003 as by
Boer et al. (2009) of seven years compared to six years. A six-year period was found for
the Warren region for both the 1953–2003 and 1953–2020 datasets.

Beyond these three examples, the quantile regression results are markedly different
from Boer et al. (2009). This includes the Boer region with data through to 2020,
which maintained a significant inverse relationship for greater than 10 years. The
LMZ region as a whole had a significant inverse relationship for greater than 10 years
over both dataset year ranges. The Southern Jarrah region only had a significant
inverse relationship for up to one year and the Northern Jarrah region had none. The
Perth region had a zero year period from 1953–2003 but a two year period from
1953–2020, however this was a significant positive relationship rather than negative.

The logarithmic-linear regression Coefficient of Determination (R2) and linear
regression slopes are provided in Table 3. Taking the Boer region from 1953–2003
and the ‘PB6vsWF6’ window as the benchmark, no other region or data period
achieved the same R2 of 0.70. The next closest R2 value was 0.39, for the Boer region
from 1953–2020. While this is still a significant relationship (p< 0.001), it represents
a marked drop in correlation. When R2 is calculated over different windows for
mean annual wildfire extent, the correlations are likewise lower (including for the
Boer region from 1953–2003). Therefore, no region, data time set or averaging win-
dow meets the benchmark R2 value.

The linear gradient results in Table 3 do show three circumstances where the
benchmark of the Boer region from 1953–2003 of �0.20 is met or exceeded (Boer
region from 1953–2003 and both datasets from the Warren region) albeit with lower
R2 values. For the remainder of the PB6vsWF6 regressions, the gradients are lower
with negative gradients all being less than �0.05. The Perth region has positive

Figure 6. Graphical representation of significant inverse relationship is determined for years since
prescribed burn. Data are summarised from Appendix S1 of Boer et al. (2009).
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gradients of greater than 0.30, showing a significant positive correlation between pre-
scribed burn and wildfire extents. As per the R2 analysis, the gradients for all wildfire
averaging windows out to 10 years are lower than the benchmark. For the 1953–2020
period, significant correlations were found for the Warren and LMZ regions when
average wildfire extents over 10 years were averaged and the Southern Jarrah region
over 9 and 10 years (all p< 0.05). However, the gradient of these significant correla-
tions are much lower than Boer et al. (2009) (�0.06 and �0.02 for the Warren and
LMZ regions and 0.004 for the Southern Jarrah region over 9 and 10 years).
Therefore even where there is a significant correlation between prescribed burn extent
and mean wildfire extent over subsequent years, the ‘leverage’ benefit is negligible
compared with Boer et al. (2009)’s leverage of �0.24 over six years.

Influence of spatial patterns of fire history

The patch metric GAM model generated by Boer et al. (2009) from the residual wild-
fire extent after year and KBDI accounted for 64% of the deviation in annual wildfire
extents. We digitised the GAM input data in Boer et al. (2009) and the residual GAM
for the most important patch metric (connectedness of patches with greater than six
years’ time since fire) are shown in Figure 7, resulting in a similar explained deviance
of 47% (slightly lower as other patch metrics were not added to generate a 3-factor

Table 1. Descriptions of IBRA sub-regions.
IBRA sub-region Description

Warren 75 distinct vegetation complexes Dissected undulating country of the Leeuwin Complex and Albany
Orogen with loamy soils supporting Karri forests, laterites
supporting Jarrah-Marri forest, leached sandy soils in
depressions and plains supporting paperbark/sedge swamps and
Holocene marine dunes with Agonis flexuosa woodlands.

Jarrah Forest
152 distinct vegetation complexes

Duricrusted plateu of Yilgarn Craton characterised by Jarrah-Marri
forest on laterite gravels and, in the eastern part, by Marri-
Wandoo woodlands on clayey soils. Alluvial and alluvial deposits
support Agonis shrublands. In areas of Mesozoic sediments,
Jarrah forests occur in a mosaic with a variety of species-
rich shrublands.

Perth 40 distinct vegetation complexes Low lying coastal plain, mainly covered with woodlands. It is
dominated by Banksia or Tuart on sandy soils, Allocasurina
obesa on outwash plains and paperbark in swampy areas. In the
east, the plain rises to duricrusted Mesozoic sediments
dominated by Jarrah woodland.

Major vegetation complexes are highlighted in bold.

Table 2. Length of time deemed to have a significant relationship between prescribed annual
extent of prescribed burns and wildfires in following years from logarithmic-linear quan-
tile regression.
Region 1953–2003 1953–2020

Boer 7 years >10 years
Warren 6 years 6 years
Southern Jarrah 1 year 1 year
Northern Jarrah 0 years 0 years
Perth 0 years 2 yearsa

LMZ >10 years >10 years
aSignificant positive rather than inverse relationship.
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residual model) which validates the consistency of the statistical methodologies
between Boer et al. (2009) and this study. Boer et al. (2009) noted that the primary
reason for the high explained deviance was the influence of a single data point with a
connectedness of �0.50. With this datapoint removed (right plot in Figure 7), the sig-
nificant increasing wildfire extent up to connectedness values of 0.44 stated by Boer
et al. (2009) is not apparent.

Residual GAMs generated from the contemporary fire dataset for the same patch
metrics had explained deviances of less than 10% in all bar the Northern Jarrah
region from 1953–2020 (which had an explained deviance of 27% primarily due to a
single datapoint similar to Figure 7) as summarised in Table 4. Residual GAM plots
for 1953–2020 are provided in Appendix 1 with a full set of GAM plots in the sup-
plementary material.

Taking the best performing GAM for each region, rather than relying on optimum
patch metrics stated by Boer et al. (2009), the Northern Jarrah GAM explained more
than 70% of the variation in annual wildfire extents for both time periods. Of the
three input factors, both GAMs are primarily influenced by the number of >6TSF
patches and connectedness of ¼<6TSF patches.

Inspecting the residual GAM plots in Appendix 1 for the Northern Jarrah region reveals
that the high explained deviance for the number of >6TSF patches is primarily due to
overfitting a polynomial curve to one data point and the high explained deviance connect-
edness of ¼<6TSF patches primarily due to overfitting to a single high residual value at
high connectedness. This implies that highly connected ¼<6TSF patches positively correl-
ate to larger annual wildfire extents. Removing these patch metrics from the options, the
highest explained deviances for GAMs become 0.08 and 0.35 for the 1953 to 2003 and
1953 to 2020 time periods respectively. Therefore the spatial patterns of >6TSF and
¼<6TSF patches do not explain the majority of the variation in annual wildfire extents.

Large wildfire probability

The fire size probability distribution analysis for both prescribed burns and wildfires
for the Boer and Perth regions from 1953 to 2020 is provided in Figure 8, with all
regions provided in for this time period in Appendix 2 and all regions for both time
periods in the supplementary material. All forest regions (including the overall LMZ
region) have similar probability distributions to the Boer region for large fires (1,000

Figure 7. Residual GAM models of ‘old fuel’ patch connectedness from digitised figures in Boer
et al. (2009). Left is full data, right is with the individual significant datapoint/outlier removed.
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to 10,000 ha) to very large fires (>10,000 ha), with large fires significantly more likely
to occur before 1960, and very large fires both before 1960 and between �2000–2015.
Large fires were significantly less likely to occur after �2016 and very large fires sig-
nificantly less likely to occur between �1970–1980 and, in most cases, after �2018.

With the annual extent of prescribed burns reaching a maximum in the late 1970s
for all forest regions, this significant increase in very large fires commences approxi-
mately 25 years after the maximum PB period and the decrease occurs approximately
40 years after the commencement of the lower PB period. This is in line with the
findings of Zylstra et al. (2022).

In the predominantly woodland Perth region, the temporal variations in probabil-
ity of large wildfires and annual extent of prescribed burning are markedly different
from the other regions (Figures 5 and 8), with a cycle of higher prescribed burn
extents in the mid 1960s, 1980s and 2000s with lower extents in the mid 1970s, 1990s
and 2010s. The last few years of data (up to 2020) show a marked increase in PB
extent trending upwards. Against this pattern, wildfires of all sizes were least likely to
occur in the mid-1970s and very large wildfires in the mid-1990s (both periods of
lower annual prescribed burn extents). Fires up to very large sizes are most likely to
occur in the 2000s (period of larger prescribe burn extents) and very large fires most
likely to occur in the 1980s (higher prescribed burn extents) and 2010s (lowest pre-
scribed burn extents since 2000 but similar to higher extents than the peaks in the
1960s and 1980s).

These decadal-scale relationships are visualised in Figure 9, showing the Pearson
correlation coefficient between annual prescribed burn extent and probability of large
wildfires for time lags of 0–60 years. Except for a two-year period in the LMZ region,
the forested regions show no significant reduction in the probability of large wildfires
in the decade after prescribed burns. The woodland Perth region shows a reduction
for ten years, which is in contradiction to the regression results for the Perth region
in Table 3.

All regions show a significant positive correlation generally between 10–25 years
and a significant negative correlation at longer timeframes (starting between 30 and
45 years depending on the region).

To explore the relationship between fire history spatial patterns and large wildfires,
linear regression models were generated for the mean probability of a large wildfire
for each year (derived from the Probability Density Function results) versus each of

Table 4. Summary of GAM explained deviance results.

Period GAM Boer Warren
Southern
Jarrah

Northern
Jarrah Perth LMZ

1959–2003 Yearþ KBDI 0.18 0.58 0.03 0.44 0.01 0.44
Connectednessþ perimeter:area

ratioþ Percentage area
0.04 0.01 0.02 0.03 0.06 0.02

Best performing 0.07 0.05 0.05 0.75 (0.08) 0.20 0.06
1959–2020 Yearþ KBDI 0.03 0.05 0.05 0.12 0.04 0.11

Connectednessþ perimeter:area
ratioþ percentage area

0.06 0.06 0.02 0.27 0.05 0.06

Best performing 0.07 0.10 0.08 0.74 (0.35) 0.14 0.12

Bracketed values show deviances after the removal of a single outlier datapoints.
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Figure 8. Wildfire size frequency probability distribution for the Boer and Perth regions (left) and
GAMs of annual area of prescribed burns (from Figure 5). Red colours indicate higher probability
and yellow colours lower probability. Contours show median and 5th percentile and 95th percen-
tiles of probability of fire size for given year against long-term average (where there is a statistic-
ally significant greater or lesser probability of a fires of the given size for the given year). Dashed
lines indicate the periods of different ‘fire management’ as defined by Boer et al. (2009) as well as
the year 2003 (end of the data used by Boer et al. (2009)).

Figure 9. Statistically significant (p< 0.05) Pearson Correlation (R) between median probability of
large wildfires (>1,000 ha) per year versus annual prescribed burn extent for time lags
of 0–60 years.
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the five patch metrics for areas that were greater than six years’ time since fire
(>6TSF) and equal to or less than six years’ time since fire (<¼6TSF) (Table 5).

As with results presented previously in this section, there is no consistent relation-
ship between the probability of large wildfires and the patch metrics. The percentage
of area of greater than six years TSF (>6TSF PLAND) was significantly (negatively)
correlated with probability of wildfires only for the jarrah regions, indicating that
across a significant part of the study area (and in particular the LMZ region as a
whole with r¼�0.03), the annual area burnt had no significant relationship to the
probability of large wildfires. The mean perimeter-area ratio of patches burnt six
years ago or less had the mean highest correlation of any patch metric, with signifi-
cant negative correlations for all forested regions and a significant positive correlation
with the woodland Perth region. This indicates that the complexity of fire patches
with less time since fire potentially had the largest influence on wildfire probability,
with more complex geometries related to lower probability of large wildfires in for-
est regions.

In most cases, the woodland Perth region had an opposite correlation with time
since fire patch geometries than did forest regions. Some of these correlations appear
to conflict. The number of patches with less time since fire and number of patches
with more time since fire were both positively correlated with the probability of large
wildfires and the complexity of patch geometry for areas of less time since fire was
also positivity correlated. These apparent contradictions may reflect the dominance of
anthropogenic, climatic or other fire regime factors not assessed here.

Discussion

By applying the methodology of Boer et al. (2009) to other regions in the southwest
of Australia and including a further additional 17 years of fire history data, we
showed that extrapolation of these results to other regions or to a warming and dry-
ing climate has little to no statistical validity. Furthermore, we found significant sup-
port for the trends measured by Zylstra et al. (2022), in which long-unburned forest
was least likely to experience large wildfires. Our results (Figure 9) showed that forest
and woodland regions had the strongest and most persistent negative relationship to
the likelihood of very large wildfires if less prescribed burning had occurred in the
region in the prior 30–45 years.

Table 5. Summary of linear regression models Pearson Correlations for annual large wildfire prob-
ability versus patch metrics.
S Boer Warren Southern Jarrah Northern Jarrah Perth LMZ

>6TSF PLAND �0.11 �0.17 20.40 20.46 �0.22 �0.03
>6TSF NP 20.49 0.00 �0.02 0.82 0.68 0.29
>6TSF AREA_MN 0.38 �0.11 �0.02 20.58 20.47 20.25
>6TSF PARA_MN �0.20 �0.02 20.44 20.51 �0.12 �0.09
>6TSF CONNECT 0.41 0.20 0.12 20.40 �0.19 �0.08
<¼6TSF PLAND 0.11 0.17 0.40 0.46 0.22 0.03
<¼6TSF NP �0.21 �0.18 20.49 20.50 0.72 20.21
<¼6TSF AREA_MN 0.06 0.04 0.33 0.43 20.66 �0.05
<¼6TSF PARA_MN 20.74 20.64 20.76 20.79 0.75 20.52
<¼6TSF CONNECT �0.19 �0.12 0.37 0.72 20.59 0.24

Numbers in bold indicate statistically significant correlations (p< 0.05).
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The Jarrah, Wandoo, Karri and Banksia vegetation complexes of the IBRA sub-
regions described in Table 1 have all been classified as different wildfire fuel types
(Cruz et al. 2018), with different rates of accumulation and structure (Gould et al.
2011; Tangney et al. 2022). The approximate 0.5 �C increase in average maximum
temperature and 30mm decrease in annual rainfall for the south-west of Australia
after the end of the study period used by Boer et al. (2009) has resulted in an altered
climate for the region. As a consequence of these spatial and temporal variations, the
inapplicability of the findings by Boer et al. (2009) across the region and time period
of this study are in line with the discussion in Boer et al. (2009):

As fuel dynamics, fire behaviour and fire regimes may differ substantially among
different forest types, our results obtained for SW Australian eucalypt forests may not
hold for forests elsewhere. (p. 141)

… the length of the inhibition period may vary substantially from one environment to
another. (p. 140)

On the regional scale of this study, there are several proven factors that influence
wildfire likelihood and behaviour in the temperate forests of Australia in addition to
the extent of prescribed burning and drought index that form the basis of the wildfire
risk management approach in Western Australia. As a result, the fire regime imposed
on this region is designed without due consideration of the various factors that are
commonly used to effectively define a fire regime.

The current use of the same Dry Eucalypt Forest Fire Model by Cheney et al.
(2012) across the southwest region for fuel and fire behaviour (Howard et al. 2020) is
highly unlikely to be an accurate representation of either of these fire influences on a
broad scale due to the range of biogeographical regions the area covers (such as the
predominantly Banksia woodlands of the Perth region) or on a finer scale due to the
number of different vegetation complexes present, even within the predominantly
open forest regions (Table 1).

An Artificial Intelligence-generated model to predict the probability of large fires
across temperate Australia found that while dryness was an important factor, small
increases in the proportion of the fire season with a Forest Fire Danger Index (FFDI)
of 50 or higher was a significantly more important factor unless dryness was excep-
tionally high (Clarke et al. 2020). Interestingly the same study found that while bio-
mass (in the form of litter fuel load) was positively correlated with large wildfire
probability up to 20 t/ha, above this the correlation stops and then becomes an
inverse correlation at litter loads greater than 30 t/ha.

The concept of ‘fuel reduction’ burning is premised on the assumption that bush-
fire fuel increases over time. The main component of this ‘fuel load’ is the leaf litter,
however, the only manipulative experiment to date has shown that this has no rela-
tionship to rates of fire spread (Burrows 1999). The assumption of increasing litter
loads over time is not always a reliable estimate either, as time since fire for fauna to
return to a region can have a large impact on the amount, structure or condition of
the litter load (Foster et al. 2020). In the Jarrah Forest region in particular, the pres-
ence of digging mammals was associated with an almost 50% reduction in surface
and leaf litter (Hayward et al. 2016; Ryan et al. 2020).
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The main fuel influencing fire behaviour is the understorey of shrubs and tree sap-
lings. This is the primary determinant of flame height (Cheney et al. 2012; Zylstra
et al. 2016), as well as crown fire likelihood and rates of spread in all but the lowest
intensity fires (Cruz et al. 2021). It has been well documented for our study area that
this understorey is promoted by fire, later self-thinning through natural processes of
succession (Burrows 1994; McCaw et al. 2002; Bradshaw 2015). This change in struc-
ture affects flammability in part by separating the canopy from the foliar biomass,
removing ‘ladder fuels’ in mature (i.e. long undisturbed) forests. These dynamics cor-
relate with a decline in the likelihood of wildfire in long-unburnt, self-thinned forest
(Zylstra et al. 2022), and with the findings we have presented here (Figure 9).

Disturbances that contribute to understory growth and higher foliar biomass are
not restricted to fires, with regrowth after logging shown to have significant long-
term impacts on fuel structure (Wilson et al. 2021), whereas after an initial period of
a higher risk fuel structure, disturbance from wildfires had little impact on fuel struc-
tures over decadal timescales. These decadal-scale relationships may explain the tran-
sition between positive and negative correlations of large wildfire probability and
time since fire shown in Figure 9.

Conclusions

The assumption of a direct inverse relationship between annual extent of prescribed
burns and wildfires in subsequent years, which underpins wildfire risk management
policy Western Australia, has been proven by this study to be inconsistent if not false
across the southwest region. There are many factors that influence wildfire behaviour,
and therefore wildfire risk management approaches need to account for the complex,
multifaceted interactions that contribute to this risk.

With the vast majority of the area burnt by wildfire across the study area being
burned by large wildfires, focusing on the temporal changes in the likelihood of large
wildfires has yielded some promising results regarding optimising wildfire risk man-
agement. In particular, the very strong inverse correlation between probability of
wildfires and the spatial complexity of recent fire history across the forested regions
of southwest Australia, independent of the average or total size of recent fires (Table
5), indicates that a more complex, nuanced fire history pattern may well yield better
wildfire risk management results than the current focus on area and cost-per-area
objectives reported annually (DBCA 2021c).

A more spatially complex fire history will also provide better outcomes for bio-
diversity conservation, with a wide range of fire histories spanning many decades
required to provide suitable habitat for the wide range of species present in this
highly biodiverse region (Bradshaw et al. 2018). Recent research by DBCA supports
this biodiversity benefit (Burrows et al. 2021). Given the traditional Indigenous focus
on small-scale rather than broad-scale burns (Lullfitz et al. 2021), our findings under-
pin the more than 50,000 years of traditional fire knowledge of the Noongar people
in the region. This would further benefit biodiversity conservation (and potentially
recovery) from the proven maximising of biodiversity values arising from their trad-
itional practices (Lullfitz et al. 2021).
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